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ON OPTIMALITY OF REGULAR PROJECTIVE 
WTIM,4TORS FOR SEA41A4ARTINGi4LE MODELS L1 

111: ONE STEP IMPROVEMENTS 

KACHA DZHAPARIDZE 

Centre for Mathematics and Computer Science, Kruislaan 413, 1098 SJ Amsterdam 

PETER SPREIJ 

Department of' Econometrics, Free LTnivcrsity. Dc Boclclaun 1105, 
1081 H V Amsterrtam 

In this paper we consider one step improvement techniques that yield optimal regu!ar projective estimators. 

KEY WORDS: Optimal estimator. asymptotic differentiability, one step improvement. 

1 INTRODUCTION 

In a previous paper [4] we discussed an optimality concept for certain parameter 
estimators, when the observed processes are semimartingales under each member of 
a class of probability measures. Estimators were there called optimal if they belong 
to the class of so called admissible estimators and if they have minimum spread. 

In the present paper we pay attention to the question of constructing these optimal 
estimators in the sense that they are obtained by suitable transformations of some 
initial estimators. The latter are assumed to have certain consistency properties, but 
need not be admissible in the sense of [4]. 

This approach essentially dates back to Fisher [6] although a thorough investi- 
gation has first been given by LeCam for the iid case in [7] and for estimators based 
on more general likelihood functions in [8]. It is also the basis for the construction of 
iterative estimators, see e.g. [3]. 

Unlike the set up used by these authors, our approach is not likelihood based, but 
extends to a more general context, e.g. regression where usually apart from the 
regression function only moment conditions on the error process are specified. A key 
concept in the description of estimators is formed by certain (asymptotic) represen- 
tations that estimators are supposed to fulfil. 

'Centre for Mathematics and Computer Science, Kruislaan 413, 1098 SJ Amsterdam. 
2Department of  Econometrics, Free Universitv. De Boelelaan 1105. 1081 HV Amsterdam. 



64 K. DZHAPARIDZE A N D  P. SPREI: 

The present paper is to be considered as a follow up of [4]. Hence, for undefined 
concepts and notation the reader is referred to [4] for further explanation. 

The rest of the paper is organized as follows. In the next section we briefly review 
parametrizations of the model under consideration and provide some complements 
to the concept of as.vmptotic weak rffikrmliuhility. Section 3 contains the main resuit 
which states that a particular estimator is optimal in the class of admissible 
estimators. 

2 SMOOTH PARAMETRIZATIONS 

2.1 Parametrization 

Assume that one has a certain stochastic basis (12 .9 ,  {F,),20, P). where P is a set of 
probability measures and on this a multivariate adapted process X with values in R", 
which we observe and which is assumed to be a semimartingale under each P E P. 
Denote by CJ' t ! ~  co!?qxnsa?nr nf thej l~mp measure of .Y under i;. Similariy A' is thc  
zompeEm"t"rof Ly under a aiid by x'.P ~ ~ f ~ . ~  ,, dcEc~c tht: cu:lci!lzous Inal-tinnalr u - -  
pari or .IF L ? ! K ~ T  P. 

Like in [4] we assume to be given two classes of predictable processes %' and X,  
satisfying certai:: :eg::!a:itv , r  nroqerties; b e.r. u if H E .%? then W E W -  with W ( t ,  x) = 

ff(:).u. Nollce (ha! ii; !he ge;;e;al set up cr;' 1.21 ~i~~ gf processes $6" is usually 
bigger than the one consisting of the processes W with W'jr ,  xj = H ( t j x  for H E 2'. 
This is trivially the case in a discrete time setting (see [4] for a detailed treatment). 
Moreover we assume the existence of a finite dimensional parametrization of the 
quotient space [PI of P under the equivalence relation defined by: P is equivalent to 
~ ' i f f H - A P =  H . A P ' f o r a l l ~  E s a n d  w * u P  = ~ * u ~ ' f o r a l l  w 6 %/.Thatis, 
there exists a map 6 : iP] - Rk, which is bijective onto an open subset 8 of iKk.  
Under this assumption, which holds throughout the paper, we write H .  As for 
H .  -4' and W u !/"or W u up if P E Po := tF1(6). 

2.2 Asymptotic weak dfferentiability, complements 

Next we turn to smoothness of the previously introduced parametrization. To that 
end we introduce the following notation. The tilde operator for given u is defined for 
each W E W by w = W + (1 - a)+ w with a = i, where in turn the hat operator on 
W is defined by k(t) = J Wjt. x)u({t), dx). When integrals of the type W * u are 
parametrized by 6 we will often write W' and w'. 

For H E 2 we write H . hAc,"or H . Mic,' if E t pa. This is in agreement with 
the notation above, since H . = H . X - H . AP - Hx * p + Hx * up = H . X- 
~ ~ ~ ~ - - ~ x u p + ~ x * u ~ .  Foral l  H ~ s a n d  W E  Y4 wewrite M ~ = M ' ( H , w )  
for the martingale defined by M0 = H . MiL% W CY */I - W * us. A? is the martin- 
gale, defined by Me = b.MiC." is * (p  - us) (see definition 2.1 below). 

We assume that (M'), and ( M ~ ) ,  are invertible for t large enough. Let then 
@t = $:(H, W) be any matrix that satisfies the equality $T$, = (MO),' and 4, = 4: 
be any matrix that satisfies q,qT = (Me);'. Similarly we write +? = +!(o, W) and 
?i.H , ,/.Q(H 01 
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We will assume that asymptotic weak d$ferentiability in the sense of [4] holds 
(definition 2.1 below). Since the definition in [4] together with the discussion that 
follows it is ambiguous, we give a slight!y different one, which is such that the 
ambiguity is removed. First we define = .dP - x i vP and H - ,jo = H - A' 
Hx * us. 

n ---..--7.m..- - t l  TI. 3 3 
L J E ~ ~ . \ : I ~ v . Y  i . ~  i i i =  ~ " i i i p Z i i ~ a i V i j  k H  rliiG uA il1.c ~ i l i i ~ d  a;ympiviicaiiy wcaaiy 
differentiable with rate d~ if there exist b E 2. X E W (both possibly depending on H) 
such :ha: Q satis:j.ing OOf -- - , 1 if#\ , - 1 p. ur . . I I  L( .. E z'", fl E .p, It' 2 $if' as i i (j 
in al! PQrobaDilities: 

Aithough h, X and ML in general depend on 8, this dependence is often not 
explicitly written in order !c? avoid some cumbersome notation. Furthermore we 

. .. . d-fccn. especially proofs. abbre\;iz[e [he p!lrasr "i:l a!! pH i>icbabi!itiehi' by 
probability". Notice that for iwo diffei-eili parameier values d and 8' the following 
relation holds. 

Therefore we define the process M~+'"' by substituting at time t in the right hand side 
- r  *: -.. ,* I\ A 
31 G ~ U ~ L K M  (i.3, c + ~ ! I [ u  ~ O I  6'. if we wriic id' = id'jii, 7)  and A?= I@@, ,q, iike 
above, t hm definition 2.1 has an equivalent statement. 

PROPOSITION 2.2 Expressions (2.1) and (2.2) in definition 2.1 hold for all H and W I$ 

for all M' = M O ( H ,  W )  

$ r [ ~ ? " "  - M: + ( M e ,  M'),+~u] + 0 in all P' probabilities (2.4) 

Proof Suppose that equation (2.4) holds for all martingales of the type 
M' = M'(H,  W ) ,  then we consider the two distinct cases M'(H,  0) and ~ ' ( 0 ,  W ) .  
This leads to equations (2.1) and (2.2) respectively. Conversely, assuming that (2.1) 
and (2.2,) hold. we write the process i n  expression (2.4) by using (2.3) as 
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The result then follows, because $,($:)-' and $,($fY)-' are bounded, because for 
instance $,(T/$')-'($;H)-~$J < I .  0 

Recall that in definition 2.1 @, is any matrix that satisfies the equality 
cj14T = (M); ' .  Obviously one wants that if asymptotic weak differentiability holds 
for a given (matrix valued) rate function 4 it also holds for other asymptotically 
equivaieni rate funclium. FUI e~iilnpk, iii ilic urigina: d~fiiiiiion in [4] wc haw taken 
the special 40, to be the symmetric positive square root of (M) ; ' .  Then we have that 
this assumption holds for any other such 4 icnder :hs extra assumption that we have 
definition 2.1 with u replaced with any adapted bounded random process {u l ) .  
Indeed, then with u, = @,;'$J~U we have that 4,u = ~ $ ~ , u ,  and lurl = I u I  since 46'4, is 
an orthogonal matrix. 

Therefore we need the following assumption. 

ASSUMPTION 2.2  expression.^ (2.1 ) and (2.2) in definition 2.1 hold for all H and W 
with u replaced by any random variabie u, such that the process {u,} is udupted und 
hounded. In particular all processes itzvohed in (2.1) and (2.2) wilh u suh.rfitu~ed u, 
are assumed to be adapted. 

.An equ~valent formulation of assumption 2~3 is of course that equation (2.4) holds 
with u replaced with u, for an adapted bounded process (u,): 

We mention a sufficient condition for equation (2.5) to hold. Let B > 0 and write 

Then equation (2.5) holds if z;(B) is measurable and I ~ ~ , , , P ( z ~ ( B )  > E )  = 0 for 
all positive B and E and far a!! P E P'. See the appendix for a discussim c?f 
measurability issues connected with Zy(B) and with the substitution of u by a 
random u,. 

Let M I  and M2 be two locally square integrable martingales. We introduce (see 
[5]) the correlation process p(M1, M2)  as follows. Let di be such that q5i@ = (Mi)+ 
(Moore-Penrose inverse) for i = 1,2. Then p(Ml ,  M z )  = 4 T ( M I ,  M2)42. With this 
definition of the correlation process we can rephrase equation (2.4) as 

$+ [M:@'" - MY] + p ( ~ ' ,  Ms)u  4 0 in all P' probabilities. 

The correlation process will show up again at various places in the sequel. 
It should be noted that the weak derivatives b and X are by no means unique. 

Suppose we have two other possible candidates for the weak derivatives, call them 
b0 and X O .  Correspondingly we have A$'' instead of M'. Let 4O be such that 
r$oq50T = ( M O # ) - ' .  SO we assume that equations (2.1) and (2.1) hold with 6, X and 4 
replaced with bO, X0  and +O, or equivalently equation (2.3) with A?'' instead of Me: 

d~,[M~+'# '~"  - M? + IM'. ~ ' ) , d l ) u l  -+ 0 in all P' probabilities. (2.7) 
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First we claim the following. 

PROPOSITION 2.4 Under assumption 2.3 there is no sequence {t,) in R, tending to 
infinity, such that I ( @ : " )  -Idt, 1 A Id,'& -+ 0 in all PO probabilities. 

Proof Suppose that the contrary holds true. Then for some sequence {t,) we 
have for instance (q$',)-'o,,: -+ 0 in probability. Let u,: = (d?,)- 'dt7u for some fixed 
vector u. The sequence {u,} is clearly bounded. So we can insert this into equations 
(2.4) and (2.7) where we take for M the special choice Me. Hence we get the 
following two convergence results in probability. Both 

and 

The conclusion is that d and do are equivalent rate processes. Hence in equation 
(2.6) we can replace the @with Q. The next thing we will show is that the martingale 
.Go and are close in the following sense. 

PROPOSITION 2.4 In all pe-probabilities 

(iii) p(Me1 M O ~ ) ~ ( A ? ' ~ ,  Me)  -+ I (2.10) 

Proof Take in equations (2.4) and (2.7) M' to be equal to M' - A$''. Substrac- 
tion of the two equations yields 

in probability, where @+, = ( M e  - ~ ' 7 : .  The first assertion follows by taking 
squares in equation (2.1 1). 

Before we prove the other two assertions we introduce the short hand notation 
p = ,o(~@, 'QoO) and R = (do)- '4 .  The process in the first assertion can then be 
written as 

According to the first assertion, this process tends to zero in probability, and since 
it is the sum of two nonnegative processes, we obtain that the process I - pR tends to 
7ero in rrohahilitv R u t  then RTR tends to I in prohahilitv 
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Before proving the last assertion we rewrite the process in expression (2.8) as 

from which it fbllows like above that p,pT tends to I in probability. One can similarly 
prove that prp, tends to I in probability, because we can replace (2.8) with 
$yT(:"3" A?"";& - 0. 3 

Remark The notation R = (q5O)-'4 and p = p(M6> f ie)  used in the above proof 
will be frequently used in the sequel. 

Assume that some predictable processes b0 and X0 are given and MO' = ~ O . M ~ '  

+ X O  * (p  - v*). Assume that the convergence in (2.8) takes place and that assurnp- 
tion 2.3 holds. Then also equation (2.7) is satisfied: 

PROPOSITION 2.6 Under assumption 2.3 and equation (2.8) also the convergence in 
(2 .7)  takes place. 

Proof As in the proof of !he previous prupsltion, we know from equation (2.8) 
that R = (&) - ' c$  is such that RTR,  tends to I in p:obabi!ity. Hence. under assump- 
tion 2.3 we may replace 4 in equarion (2.1) with 4". Hence the vahdity of (2.3) would 
follow from $, (M,  M O @ -  M'),@;u 4 0 in probability. But this is guaranteed by the 
Kunita-Watanabe inequality since (2.8) holds by assumption. 0 

The interpretation is that under the assumptions made we can both use (M" A?*) 
and (M', f ie)  as a weak derivative of a martingale M'. 

3 IMPROVED ESTIMATORS 

Suppose that we are given an estimator 80 of 8, which is assumed to be an adapted 
and moreover ilnai is 6 - -. - - -'-A- --' 1--- ---"'-I- , LUIISISL~IIL vy WIIIGII we mean that for all 8 E @ ihe 

process 4-'(80 - 8) is PO-tight: 

lim limsup P ( J + ; ' ( ~ ;  - 8 ) )  > K )  = 0, for all P E Po. 
K-m t-+m 

Notice however, that we don't require O0 to be admissible in the sense of [4]. 
Assume that we are also given an estimator Q, of (M')-' that is consistent in the 

following sense: 

in all Po-probabilities. 
Similarly, we consider estimators b0 of b and 3 of 1' that are assumed to be 

predictable processes belonging to Z and W respectively, not depending on-8 of 
course, that-are consistent in the sense that if f ie  is defined by i@* = Ms(bO, X O )  = 
b0 . iMC,' + X0 * (p  - #), then 
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in all ~"~robabilities. Notice that under the assumptions made, we can replace f i e  
in equation (2.4) by fioe (cf. proposition 2.6). 

Since X as well as j q n  general depend on 0, a typical choice for 3, is obtained by 
plugging in 6$- in all places where 6' appears in the expression for ie. Under fairly 
broad conditions (see the appendix) this yields the process Xo predictable. A similar 
remark holds for bO. Of course the consistencv requirement has to be verified. but it 
often holds under a continuity condition. See the example at the end of this section. 
The next thing we do is the defining of an estimator M of the martingale Qe. '$?f is, 
by the way, not a martingale itself. Recall equation (2.3) and define 

We impose the more stringent condition (2.6) mentioned in the previous section on 
the smoothness of the parametrization. 

We will also need the following assumption on the asymptotic behaviour of ail 
martingales of the form 1l.1' -- M'(H, Wj for H E X and W E .II-. If gTW = 
i M : j - l  , then 

All the processes ~ M '  are pe-tight. (3 . 5 )  

We recall from Dzhaparidze & Spreij [4] the definition of an optimal regular 
estimator 6 of 6'. It is such that its spread attains the lower bound (Me)- ' .  Such an 
estimator is characterized (cf. [4], proposition 7.1.2) by satisfying 

with @T,: + 0 in all ~"~robabilities. 
&!nw we wi!! need 2~ .uxi!igry result or, yeprer~ctl?ioc of nntimal "Y ""'U' 

estimator under the condition that (3.3) or (2.8) holds (which roughly speaking 
implies that we can often replace fiO with fie). It is the content of the following 
proposition. 

PROPOSITION 3.1 Let an estimator 8 be representable as 

with ~ Y T T , ~  + 0 in all Po-Probabilities. Then 6 is a regular estimator and optimal in the 
sense that its spread asymptotically equals the lower bound ( f i e ) - ' .  

Proof Proving regularity is equivalent to proving the following statement (see 
section 6 in [4]): 4YT(fi0< fiO' - Mfl),$r 4 0. Using the notation of the previous 
section, this statement can be written as R, - ,o: 4 0. But we proved this already in 
the previous section (proposition 2.5). 

According to its definition (see [4]) the spread of 8 is (Moo)-' = 4040T = 
~ $ ( R ~ R ) - ' $ ~  and the optimal spread is ( f ie ) - '  = &bT, which are asymptotically 
:'qI1,7I c i n ~ e  R T R  trpdc tn T IS?? thp  nrnnf nf n - ? n n c i t ; n m  3 C\ r, 
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The main result of the paper is the following. 

THEOREM 3.2 Assume that (2.6) holds. Dejine the estimator 8, by 

Proof We have to show that rf defined by 

is such that q5yTrl: -+ 0 in all Po-probabilities. The proof is divided into a number of 
steps. 

Step I Let 8 be such that = (Moo) .  Define E%S EL doT [k - MOB+ 
jiP")e $)I. We claim that E: + 0 in all ~"~robabilities. So consider for 
p p6p{1-01 (,,,, ; 6 )  5 P ( I , - : ~  ; 6, ;till 5 B)  t Pflu,; ; B)  with uI = (@:)-I ($  - 8). 
xulice lhai iUfj  is since ii, = I?,(cjl; 'lo" jv; - 8) and RJR, - f. {Here and else- 
where in this pmnf cnnvergence is always TO be understood as convergence in all  he 
Po-Probabilities). The last probability can be made arbitrarily small by choosing B 
large enough on view of equation (3. I), whereas the former one tends to zero for any 
3 in view of (2.6) with H = ito and W = 2. 

Step 2 Consider the asymptotic behaviour of Q. Clearly not only (3.2) holds, 
but also $;'Qt4rT + I and ( @ ; ) - ' Q , ( ~ O ) ; ~  + I .  TO see the latter, consider 
(q5:)-' Qt (4');' - I = ~ , ( 4 ; ' Q , r $ ; ~  - (RT R,)-') R:. Call the term in outer parenth- 
eses a,, then a, + 0. Consequently we have 0 5 RfatRTR,aTRT 5 tr ( R T R , ) ~  . 
Q,QT - 9. So we caa write 

with 6, + 0. 

Step 3 Use the result of step 1 to write 

Use again R = ( q 5 O ) - ' q 5  and consider the first term in expression (3.1 1). It can then, 
making use of the result in step 2, be written as ( I  + 6 ) ~ ~ .  Hence ( I  + 6 , ) ~ :  4 0. Next 
we consider the second term in expression (3.1 1). We again use step 2 to write it as 
-6(q5O j- ' (go - 8) = - 6 ~ 4 - '  (0° - 0). Because 6, + 0, R: R, -+ I and O0 is assumed 
to he 4-consistent. we conclude tha t  the whole second term tends to 7ern 
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Finally we look at  the last term of (3.1 1). Rewrite it as 6C$OT~06. Assumption (3.5) 
together with St + 0 yields this tending to zero. 

This finishes the proof of the theorem. 0 

Remark By using similar techniques as in the proof one can also show the 
following statement. 

C$:[M, + 4;' (6 - O)] + 0 in all Po probabilities (3.12) 

Remark Inspection of the proof reveals that one can imagine situations wherc it 
is not needed that 8" is 4,-consistent. Suppose that one can say a little more about the 
convergence in (2.4), for instance that one can replace in this expression the process 4 
by another process r such that $ T [ ~ 6 f r l u  - Me + (M6, M ~ ) ~ ~ , U ]  is stocha~tically 
bounded (in all Po-probabilities). and such that $ T [ ~ 6 + " r  - M6 + (M6, M~),U,] + 0 
in probability if r;'u, - 0 in probability. In many cases this implies r;ld, + 0 in 
probability, so r, converges slower to 0 then 4,. Suppose then that f30 is such that 
r;! je - 8) + 0 in probability. Then the process in step 1 of the proof of the above 
theorem still tends to zero in probability under the present assumpiivns. There is 
however a price to pay for allowing slower rates of convergence for @, which is 
imposing conditions on the behaviour of Q in order to have also the second term in 
(3,111 cmwerging to zero. Clearly, tightness of {6,(&'rt) is what one needs. So, 
under this condition the content of theorem 3.12 remains true. We illustrate this 
remark by the following example. 

Example Consider a counting process N with an intensity process under a 
measure of the form Of,. Here 6 is a positive parameter (to be estimated) and f 
a known positive Lebesgue-measurable function. We choose W to be the set of all 
processes of the form W(c, x) = w,x with w predictable and Ji ~$f,ds finite for all 
t > 0. Then all martingales Me are affine in 0, so we may take r, to be identically 
1. Let now O0 be any strongly consistent estimator of H such that 8: > O and 
~ i ( e ) ~ f , d s  finite for all t > 0 (no rates of convergence required so far). Choose 
xO(s, x) = (6;-)-I*. Take Q;' = 8: Ji(O;) -%ds, and assume that lim,-,F, = m 
with F, = oo with F, = $f,ds. Then Q t ( ~ 0 6 )  + 1 in probability and by strong 
consistency of 80 also Q,(MO@) -+ 1 in probability (even almost surely). An easy 
computation shows that the tightness condition on the convergence of the Q- 
process mentioned in the previous remark here comes down to tightness of the 
process ~ ' / ~ ( 8 0  - 0). Since in this example we can replace 4 with F - ' /~ ,  we have 
nothing gained compared to theorem 3.2 by not imposing a tightness condition on 
the behaviour of 80. However, if we assume a priori that F ' / ~ ( O ~  - 0) is tight, then 
one can easily check that all the conditions mcntioncd in the last remark above 
are satisfied and with 

the estimator 8 = 0" + QM is optimal according to the reamark above. 
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Another possibility is to take Q;' = $ ( ~ : ) ~ ' ~ . d s .  With the same M as above the 
6 from equation (3.8) can now be represented as the solution of the following 
equation 

while Q satisfies 

Equations of this kind are encountered when considering recursive estimators. 
See for instance [lo]. Hence the somewhat unusual expression for M is a conse- 
quence of the definition of a as solution of the system of stochastic ddferential 
equations (3.13) and 13.14). As a final icinark wc notice the following. Suppose we 
rcplacc in (3.13) and ii; (3.14) 6; 8, can prove co:lsis[enz; of [!gj 
--- i;l the appropriate tezhniqiicsj. it then foiiows hnii iiie preceding disciissiori that 

the thus ~ b t a i n c d  ieciii.siie cs;ima;fir is .c;plima:. 

Example Consider a stationary situation and assume that the observed Y is 
:he u~!rr ,  eLr a coniinuous compensaior anti a coniinun::? incr:i rr,a:ringaie ?.:r,der 
each of the probability measures involved. Stationarity in this case means that 
under a suitable parametrization we have the following model 

where W' is a Wiener process under each and i( is a knolwn fmction. independent 
of time. It is easy to see that in this case b = a in assumption 3.1, assuming that u is 
an (ordinary) differentiable function of H .  If (I 1s not van~sh~ng,  then 11 eas~ly lbllows 
& l ~  - mat @ r  = d[$)-'t-'~'. Let now 8' be a strongiy consistent esiimaior of B that is aiso 
&-consistent. We define the predictable process b0 by by = u(tlp_). One can then 
show that if a is a continuously differentiable function, the limit for t + cc of 
t-' J,'(b: - a(8))'ds is zero, hence the convergence in (3.3) takes place. By taking 
Q;' = b($Y)'t also (3.2) holds. So according to theorem 3. 2 the estimator 0 defined 

is optimal 

A MEASURABILITY ISSUES 

In this appendix we set forth conditions under which suprema of random variables 
are measurable and discuss some other measurabilitv issues We follow the annroach 
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given by Pollard in [9], Appendix C, which in turn is based on chapter 111 of 
Dellacherie and Meyer [I]. 

Let (R, 9, P) be a probability space. Let Bm and B be the Bore1 a-fields on Rm 
and R respectively, and let .C 8 .gm be the product a-algebra on R x Rm. Then we 
have 

T . - . ~ ~ . .  A I , irr ..-. n t ~ l . t 7 : ~ , , ~ m  ; ~ , ~ c , ~ C i ; S d i u " , ~ ~ c . ~ ~ c z f ~  c,yu"i: r : , q  : R 
L 1 .  8 1 1 . 5 J U ! t L t  L l l U L  L. J L  i\ Y Y  

given by Z'(w) = sup{Z(w, u) : u E R m )  is measurable w.r.t 9 p ,  the completion of 9 
f i~r  the prcb,nbili!ifj, ,meamre P .  

Proof See Pollard [9], page 197. 0 

Suppose now that there is instead of a single measure P a whole family P of 
measures P is defined on (0, F) ,  the usual situation in statistical problems. Assume 
that there is a a-finite measure ,u that dominates this family, then we have in the 
notation introduced above 

LEMMA A.2 A~sutn~lti chul Z . f? n Q"' + K! be mt.asuiable. The map 2' is measurable 
w.r.t .F if -9 is complete.for some P E P or for / I .  

The prooP is obvious. 
Another commonly used possibility to attack measurability problems for suprema 

is to assume a separability ccndition for Z. However, sirni!ar problems as above 
appear here, since the definition of separability (see i2j) involves sets of measure zero. 
So in the presence of a family of measures it is not directly clear to which of those 
"measure zero" refers. 

Probably the easiest way to get rid of these measurability problems is to assume 
that for each w the map Z(w, .) is continuous (or piecewise continuous). Then 
suprema are determined by a fixed dense subset of Rm like the rationals. 

Gther measurability probiems arise when we repiace u in Zjw, uj with a random 
vector, and we want the map w -+ Z(w,u(w)) to be measurable. A sufficient 
condition for this to happen is that Z is jointly measurable in w and u and that 
w - u(w) is measurable (cf. LeCam [8], restriction (M2)). 

If we apply this result to the processes in section 2, we get for instance 
adaptiveness of the process in expression (2.5) under the following set of conditions. 

ASSUMPTION A.3 cor eachJixed H E 2, W E W a n d  t > 0 the mapsgiven by (w, 8) H 

q5(w, %), (w, 8) H H . A~~(w), (w, 8) H W * v!(w), w H U ,  (w) are jointly 9,-measurable 
with respect to all their arguments. 
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