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ON OPTIMALITY OF REGULAR PROJECTIVE
ESTIMATORS FOR SEMIMARTINGALE MODELS
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In this paper we consider one step improvement techniques that yield optimal regular projective estimators.

KEY WORDS: Optimal estimator, asymptotic differentiability, one step improvement.

1 INTRODUCTION

In a previous paper [4] we discussed an optimality concept for certain parameter
estimators, when the observed processes are semimartingales under each member of
a class of probability measures. Estimators were there called optimal if they belong
to the class of so called admissible estimators and if they have minimum spread.

In the present paper we pay attention to the question of constructing these optimal
estimators in the sense that they are obtained by suitable transformations of some
initial estimators. The latter are assumed to have certain consistency properties, but
need not be admissible in the sense of [4].

This approach essentially dates back to Fisher [6] although a thorough investi-
gation has first been given by LeCam for the iid case in [7] and for estimators based
on more general likelihood functions in [8]. It is also the basis for the construction of
iterative estimators, see e.g. [3].

Unlike the set up used by these authors, our approach is not likelihood based, but
extends to a more general context, e.g. regression where usually apart from the
regression function only moment conditions on the error process are specified. A key
concept in the description of estimators is formed by certain (asymptotic) represen-

tations that estimators are supposed to fulfil.
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64 K. DZHAPARIDZE AND P. SPREIJ

The present paper is to be considered as a follow up of [4]. Hence, for undefined
concepts and notation the reader is referred to [4] for further explanation.

The rest of the paper is organized as follows. In the next section we briefly review
parametrizations of the model under consideration and provide some complements
to the concept of asymptotic weak differentiability. Section 3 contains the main result
which states that a particular estimator is optimal in the class of admissible

estimators.

2 SMOOTH PARAMETRIZATIONS

2.1 Parametrization

Assume that one has a certain stochastic basis (€2, #,{#},.,. ), where P is a set of
probability measures and on this a multivariate adapted process X with values in RY,

which we observe and which is assumed to be a semimartingale under cach P ¢ P.
Denote by ¥ the compensator of the jump measure of X under 7. Similarly 47 is the

- X< o M" we denote the continuous martingale

1 I
X un ana Oy Wi € 4enote ine

\,u;x.peﬁaatu. Ul A uud\.«

part of A" under P.

- D
r

Like in [4] we assume to be given two classes of predictable processes # and #,
ari if He# then Wew with W(t,x)=

su
satisfying certain regu e
H{rjx. Nouce that in t up of [4] the class of processes #" is usually

bigger than the one consisting of thc processes W with W (1, x) = H(tjx for H € #.
This is trivially the case in a discrete time setting (see [4] for a detailed treatment).
Moreover we assume the existence of a finite dimensional parametrization of the
quotient space [P] of P under the equivalence relation defined by: P is equivalent to
P iffH-AP = H A" forall H € # and W « ¥ = W v forall W € w". That is,
there exists a map ¢ : [P] — R*, which is bijective onto an open subset © of Rk.
Under this assumption, which holds throughout the paper, we write H - A% for
H-A? and W« 1f for W« 7 if P € PY .= 971().

2.2  Asymptotic weak differentiability, complements

Next we turn to smoothness of the previously introduced parametrization. To that
end we introduce the following notation. The tilde operator for given v is defined for
each W e # by W = W + (1 — a)" W with a = 1, where in turn the hat operator on
W is defined by W(1) = [ W(z, x)u( ({},dx). When integrals of the type W v are
parametrized by 6 we will often write W? and W?.

For H € # we write H - M®? for H - M®? if P € P°. This is in agrcement with
the notation above, since H - MY = H .- X — H-A? — Hxsxpu+ Hx*xv' =H - X—
H-A° —Hxxp+Hx+1% Forall He # and W € % we wrxte M= MY(H, W)
for the martingale defined by M? = H - MY + W s — W x %, M? is the martin-
gale, defined by M? = b.M? + X « (u — 1) (see definition 2.1 below)

We assume that (M?) and (M?), are invertible for ¢ large enough Let then

= ¢®(H, W) be any matrix that satlsﬁes the equality o7, = (M ) and ¢, = ¢’
be any matrix that satisfies ¢,¢7 = (M?),". Similarly we write ¢ = ¢¢(0, W) and
o — 8
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OPTIMAL PROJECTIVE ESTIMATORS II1

We will assume that asymptotic weak differentiability in the sense of [4] holds
(definition 2.1 below). Since the definition in [4] together with the discussion that

follows it is ambiguous, we give a slightly different one, which is such that the
ambiguity is removed. First we define AP = 4P xv P and H A°=H - A°
Hx 1P,

DeriNiTION 2.1 The compensators 4”7 and o7 are called asymploticaily weakly
differentiable with rate ¢ if there exist b 6 H .)€ ¥ (both possibly depending on 6)
such that with ¢ satisfying oo’ = (M%) 'foralluc R", He # W e # ast — oo
in all P? probabilities:

1

(i) W | H- AT — H - A - : ‘Hd(M‘>bT¢,uJ —0 (2.1
0.4
(ii) WV IW s W AT s o] — 0 (2.2)

with /" and " as above.

Although 5, A and M* in general depend on #, this depe
explicitly written in order to avoid some cumbersome notation. Furthermore we
often. especially in pro Ofs, abbrevia ep ? hities” by “m
probability”. Notice that for two different pa

relation holds.

al
1 di
1

rameter vaiues ¢ and ¢ the [ollowing

MY (H W)= MO(H, W)+ H (4% — 4% + W« (o —1f) (2.3)

Therefor we define the process MGM”" by substltutmg at time 7 in the r1ght hand side
ion (2 3) 8 + dufor & If we write MY = MP(H, W) and M? = M®(b, \), like
hen definition 2.1 has an equivalent statement.

ProrosiTION 2.2 Expressions (2.1) and (2.2) in definition 2.1 hold for all H and W iff
Sfor all M® = MP(H, W)

O MO MO (MO MO, pu) — O in all PY probabilities (2.4)

Proof Suppose that equation (2.4) holds for all martingales of the type
M? = MP(H, W), then we consider the two distinct cases M?(H,0) and M?(0, W).
This leads to equations (2.1) and (2.2) respectively. Conversely, assuming that (2.1)
and (2.2) hold, we write the process in expression (2.4) by using (2.3) as

wwf’)‘[w{f [Hﬁf*““—ff'ﬁf— [ ]Hd<MC>bT¢,u”
0.1

I

+ () [wwl W — W — WAT x
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The result then follows, because ()" )" and w,(y’),W)fl are bounded, because for
instance ¥, (/)™ (W) "y < 1. O

Recall that in definition 2.1 ¢, is any matrix that satisfies the equality
o] = (M),"I. Obviously one wants that if asymptotic weak differentiability holds
for a given (matrix valued) rate function ¢ it also holds for other asymptotically
equivalent rate functions. Foi example, in the original definition in [4] we have taken
the special ¢g, to be the symmetric positive square root of (M )t_l. Then we have that
this assumption holds for any other such ¢ under the extra assumption that we have
definition 2.1 with « replaced with any adapted bounded random process {u,}.
Indeed, then with u, = qﬁ(},‘ ¢.u we have that ¢,u = ¢ou, and |u,| = |u| since q")gthﬁ, is
an orthogonal matrix.

Therefore we need the following assumption.

ASSUMPTION 2.2 Expressions (2.1) and (2.2) in definition 2.1 hold for all H and W
with u replaced by any random variable u, such that the process {u;} is adupted and
bounded. In particular all processes involved in (2.1) and (2.2) with u substituted by u,
are assumed to be adapted.

An equivalent formulation of assumption 2.3 is of course that equation (2.4) holds
with u replaced with u, for an adapted bounded process {u}:

P MO M (MO, MY o] — 0 in all PY probabilities (2.5)

We mention a sufficient condition for equation (2.5) to hold. Let B > 0 and write

" [Mf””" ~ MO (M, M”>,¢,u} ' (2.6)

Zf(B) = sup
[u|<B

Then equation (2.5) holds if Z?(B) is measurable and lim, .o P(Z(B) > €) = 0 for
all positive B and € and for all P € PY. See the appendix for a discussion of
measurability issues connected with Z¢(B) and with the substitution of u by a
random u;.

Let M; and M, be two locally square integrable martingales. We introduce (see
[5]) the correlation process p(M1, M) as follows. Let ¢; be such that il = (M)t
(Moore-Penrose inverse) for i = 1,2. Then p(M, M3) = ¢T (M, M3)¢,. With this

definition of the correlation process we can rephrase equation (2.4) as

Wy [Mf”"'" - Mf} + p(M? M?)u — 0 in all P’ probabilities.

The correlation process will show up again at various places in the sequel.

It should be noted that the weak derivatives b and A are by no means unique.
Suppose we have two other possible candidates for the weak derivatives, call them
»° and X°. Correspondingly we have M® instead of M?. Let ¢ be such that
#°¢°T = (M%)~ So we assume that equations (2.1) and (2.1) hold with b,  and ¢
replaced with 5%, A% and ¢°, or equivalently equation (2.3) with M instead of M?:

DIMOE _ pg® (MO M%),6%] — 0 in all P? probabilities. (2.7)



OPTIMAL PROJECTIVE ESTIMATORS 111 67

First we claim the following.

PROPOSITION 2.4  Under assumption 2.3 there is no sequence {1,} in R, tending to
infinity, such that |(62) ' ¢, | Ao, 62| — 0 in all P? probabilities.

Proof Suppose that the contrary holds true. Then for some sequence {z,} we
have for instance (cp’f,’“)_'cp,v — 0 in probability. Let u, = (ai?u)_]d),i_u for some fixed
vector u. The sequence {u,, } is clearly bounded. So we can insert this into equations
(2.4) and (2.7) where we take for M the special choice M?. Hence we get the
following two convergence results in probability. Both

Q5,7; [Mi+¢z,,u _ MZ + <M()>l,,¢)1nu:l -0

and

- P -~ ~ i 1
Cb,ln [Mtﬂny Gt MZ + <M6,.M00,\,n¢l,,u’ — 0.
Substraction of the two yields 7 — p(M?, /i;iog),n(q')i)"gb," — 0. But this cannot
happen since p(M", M™), p(M™, M"), < [. O
The conclusion is that ¢ and ¢° are equivalent rate processes. Hence in equation
2.6) we can replace the #° with ¢. The next thing we will show is that the martingales
M? and MY are close in the following sense.

PROPOSITION 2.4 In all P-probabilities

@) ¢ (M? — M”), ¢, — 0 2.8)
(ii) ol (M°, M), — 1 (2.9)
(iii) p(MO, M) (MY M°) — T (2.10)

Proof Take in equations (2.4) and (2.7) M? to be equal to M? — M. Substrac-
tion of the two equations yields

Y(M? — M) ¢, — 0 @2.11)

in probability, where ¢/, = (M? — M), The first assertion follows by taking

squares in equation (2.11).
Before we prove the other two assertions we introduce the short hand notation

= p(M? M%) and R = (¢°)"'¢. The process in the first assertion can then be
p=p

written as
I—pR—R"p" + RTR= (I — R"p")(I — pR) + RT(I — p"p)R.
According to the first assertion, this process tends to zero in probability, and since

it is the sum of two nonnegative processes, we obtain that the process / — pR tends to
7ero in probabilitv. But then RTR tends to 7 in probabilitv
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Before proving the last assertion we rewrite the process in expression (2.8) as
(RzT = p) (R — P;T) +1- PrPrT

from which it follows like above that p,p! tends to / in probability. One can similarly

prove that p, p; tends to I in probability, because we can replace (2.8) with
JﬂT/ 1”19 _ IVIOH\ AO —. 0. O

Remark The notation R = (¢°) "¢ and p = p(M?, M*) used in the above proof
will be frequently used in the sequel.

Assume that some predictable processes b° and X° are given and M% = p°. M
+A% % (1 — o). Assume that the convergence in (2.8) takes place and that assump-
tion 2.3 holds. Then also equation (2.7) is satisfied:

PROPOSITION 2.6 Under assumption 2.3 and equation (2.8) also the convergence in
(2.7) takes place.

Proof As in the proofl of the previous proposition, we know from equation (2.8)
that R = (¢") ™' is such that RT R, tends to / in probability. Hence, under assump-
tion 2.3 we may replace ¢ in equation (2.4) with ¢°. Hence ihe validity of (2.3) would
follow from v, (M, M* — M%) ¢°u — 0 in probability. But this is guaranteed by the
Kunita-Watanabe inequality since (2.8) holds by assumption. O

The interpretation is that under the assumptions made we can both use (M v MY
and (M?, M") as a weak derivative of a martingale M°.

3 IMPROVED ESTIMATORS

Suppose that we are given an estimator 6° of @, which is assumed to be an adapted
process and moreover that is ¢,-consistent by which we mean that for all § € © the
process ¢~ (6° — 6) is PP-tight:

11m limsup P(|¢;'(6° — )| > K) =0, forall Pe P’ 3.1

t—00

Notice however, that we don’t require ° to be admissible in the sense of [4].
Assume that we are also given an estimator Q, of (M #)~! that is consistent in the

following sense:

¢>,TQ;1¢, — 1T 3.2)

in all P?-probabilities.
Similarly, we consider estimators ° of b and X0 of A that are assumed to be

predictable processes belonging to # and #  respectively, not depending on_6 of
course, that are consistent in the sense that if M% is defined by M% = M?(°, X0) =

BO . MY+ X0 % (u —1?), then
oT (M? — M%) ¢, — 0 3.3)
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in all P?-probabilities. Notice that under the assumptions made, we can replace M?

in equation (2.4) by M (cf. proposition 2.6).

Since A as well as A’ in general depend on 6, a typical choice for )\0, is obtained by
plugging in % in all places where # appears in the expression for M. Under fairly
broad conditions (see the appendix) this yields the process A° predictable. A similar
remark holds for A°. Of course the consistency requirement has to be verified. but it
often holds under a continuity condition. See the example at the end of this section.
The next thing we do is the defining of an estimator M of the martingale M?. M is,
by the way, not a martingale itself. Recall equation (2.3) and define

M, = MEB0,00) = MO(BO, 30) + (B (4" — A")), + (N0« (/= %)), (3.4)

We impose the more stringent condition (2.6) mentioned in the previous section on

the smoothness of the parametrization.
We will also need the following assumption on the asymptotic behaviour of all
mdmngdleb of the form M’ = M”(H W) for He A and W e w". If yTyp=

(M%7, then

All the processes wM? are P’-tight. (3.9)

We recall from Dzhaparidze & Spreij [4] the definition of an optimal regular
estimator ¢ of 6. It is such that its spread attains the lower bound (Ma)". Such an
estimator is characterized (cf. [4], proposition 7.1.2) by satisfying

(MY —6) =M +n° (3.6)

with ¢/’ — 0 in all P’-probabilities.

Below we will need an auxiliary result on the representation of an optimal
estimator under the condition that (3.3) or (2.8) holds (which roughly speaking
implies that we can often replace M? with M%). It is the content of the following
proposition.

PROPOSITION 3.1 Let an estimator 0 be representable as
(M%) (0 - 6) = MY +of (3.7

with (/)O T771 — 0 in all P-probabilities. Then Gisa regular esnmator and optimal in the
sense that its spread asymptotically equals the lower bound (M 9)

Proof Proving regularity is equivalent to proving the following statement (see
section 6 in [4]): 0T (M, MY — M?) ¢, — 0. Using the notation of the previous
section, this statement can be written as R, — p! — 0. But we proved this already in
the previous section (proposition 2.5).

Accordmg to its definition (see [4]) the spread of 6 is (M%)~ = $0¢T =

#(RTR)'¢T and the optimal spread is (M?)~' = ¢47, which are asymptotlcally
2qual <ince RT R tends ta T (cee the nranf Af neanncitinn 7 &)
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The main result of the paper is the following.

THEOREM 3.2 Assume that (2.6) holds. Define the estimator 6, by
6, =6+ O:M,. (3.8)

Then 91 is Optlnhh in the sense that it .u’lu’.»ﬁw i'quu ion (Q 7

Proof We have to show that 7 defined by
0’ = (M6 - 6) — M* (3.9)

is such that ¢?7n¢ — 0 in all P’-probabilities. The proof is divided into a number of
steps.

Step 1 Let ¢° be such that ¢°(¢°) " = (M"). Define &’ as e’ = ¢°T[M — M"+
(M)(8°  6)]. We claim that ¢/ — 0 in all P’-probabilities. So consider for
Pe PP > 8) < P(le?) > 6, ju| < B) | P{lul > B) with u = (¢%) (6" - 9).
Notice that {u,} is tight since u, = R, 14}1) (90 ) and RI'R, — I. (Here and else-
where in this proof convergence is always to be understood as convergence in alil the
P?-probabilities). The last probability can be made arbitrarily small by choosing B
large enough on view of equation (3.1), whereas the former one tends to zero for any

B in view of (2.6) with H = 4 and W = X"

Step 2 Consider the asymptotic behaviour of Q. Clearly not only (3.2) holds,
but also qb,"Q,d),‘ — I and (qb?)*lQ,(qSO)_T — I. To see the latter, consider
@97 Qu(%), T R(¢7'0i¢7T — (RTR,)™")RT. Call the term in outer parenth-
eses a,, then o, — 0 Consequently we have 0 < R,o,RTR,al RT < tr(R! R)*-
a,a, — 0. So we can write

(@) "0 = (1 +6)]" (3-10)

Step 3 Use the result of step 1 to write

¢0T 0 _ ¢0T[<M06‘> 0 9) Moa]
= " T(M”)(6" — 6+ OM) — M)
= ¢0T[(AZ[00>(90 0+ 0((6°) T + MY — (M) (6° - 6))) — MY
= (#")7'0(¢") " + (¢°) T — Q(M*))(6° — 0) +[(6") 7' Q — ¢TI M.
(3.11)

Use again R = (¢°)"¢ and consider the first term in expression (3.11). It can then,
making use of the result in step 2, be written as (7 + 6)e. Hence (1 + 6,)¢% — 0. Next
we consider the second term in expression (3.11). We again use step 2 to write it as
—6(¢%) 71 (8% — 0) = —6Rp~1(6° — 0). Because 6, — 0, RT R, — I and 6° is assumed
to he A-consistent. we conclude that the whole second term tends to zero
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Finally we look at the last term of (3.11). Rewrite it as 6¢°7 M%. Assumption (3.5)
together with 6, — 0 yields this tending to zero.
This finishes the proof of the theorem. O

Remark By using similar techniques as in the proof one can also show the
following statement.
T [M, + 67! (8° — 6)] — 0 in all P? probabilities (3.12)
Remark Inspection of the proof reveals that one can imagine situations where it
is not needed that 6" is ¢,-consistent. Suppose that one can say a little more about the
convergence in (2.4), for instance that one can replace in this expression the process ¢
by another process r such that 7 [M?+# — M? + (M? M?) ru] is stochastically
bounded (in all P?-probabilities). and such that 7 [M?*% — M? + (M® M%) u] — 0
in probability if r;lu, — 0 in probability. In many cases this implies r7l¢, — 0in
probability, so r, converges slower to 0 then ¢,. Suppose then that A° is such that
;167 — ) — 0 in probability. Then the &? process in step 1 of the proof of the above
theorem still tends to zero in probability under the present assumptions. There is
however a price to pay lor allowing slower rates of convergence for #°, which is
imposing conditions on the behaviour of Q in order to have also the second term in
(3.11) converging to zero. Clearly, tightness of {6,(@6?)_'r,} is what one needs. So,
under this condition the content of thcorem 3.12 remains true. We illustrate this
remark by the following example.

Example Consider a counting process N with an intensity process under a
measure P? of the form 6f;. Here 6 is a positive parameter (to be estimated) and f
a known positive Lebesgue-measurable function. We choose #” to be the set of all
processes of the form W (s, x) = w,x with w predictable and fol w? fids finite for all
¢ > 0. Then all martingales M? are affine in 6, so we may take r, to be identically
1. Let now #° be any strongly consistent estimator of @ such that ¢° >0 and
j;(ﬂ?)zf:ds finite for all 7 > 0 (no rates of convergence required so far). Choose
X(s,x) = (6°) 'x. Take Q' =6 f;(&?)_iﬁ.ds, and assume that lim, ,F, = co
with F, = co with F, = [; fyds. Then Q,(M®) — 1 in probability and by strong
consistency of #° also Q,(M%) — 1 in probability (even almost surely). An easy
computation shows that the tightness condition on the convergence of the Q-
process mentioned in the previous remark here comes down to tightness of the
process F'/2(§° — ). Since in this example we can replace ¢ with F~'/2, we have
nothing gained compared to theorem 3.2 by not imposing a tightness condition on
the behaviour of 6°. However, if we assume a priori that F'/4(6° — 6) is tight, then
one can easily check that all the conditions mentioncd in the last remark above

are satisfied and with
. "dN, L,
M, = : —90/ 22 ds
0 Tl &

the estimator = 69 + OM is optimal according to the reamark above.
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~3
3]

Another possibility is to take Q! fo(ﬁo )~ 'f.ds. With the same M as above the
6 from equation (3.8) can now be represented as the solution of the following

equation
(
df, = (dN[ 6, f.dr) (3.13)
while Q satisfies
P o
U= _g_er (3.14)

Equations of this kind are encountered when considering recursive estimators.
See for instance [10]. Hence the somewhat unusual expression for M is a conse-
quence of the definition of 6 as solution of the svstem of stochastic differential
equations (3.13) and (3.14). As a f‘ nal rcmark wc notice the fo llowmg Sum)ose we

T .

replace in (3.13) and in (3.14) & w
or the appropridte technigues). i‘ ‘
h

AQtiTha

he thus obtained recursive cstima

Example Consider a stationary situation and assume that the observed X is
the sum of 1 continuous compensator and a continuous iocat martingale under

each of the probability measures involved. Stationarity in this case means that
under a suitable parametrization we have the following model

dX, = a(9)dt + dw?! (3.15)
where W is a Wiener process under each P? and a is a known fu
of time. It is easy to see that in this case b = & in assumption 2.1, assummg that a 1s
an (ordinary) differentiable function of 6. If a is not vanishing, then it easily follows
that ¢, = a(6)”' =2, Let now #° be a strongly consistent estimator of ¢ that is also
V/i-consistent. We define the predictable process 6° by 6% = d(6° ). One can then
show that if a is a continuously differentiable function, the P? limit for 1 — oo of
! fol(bg - d(ﬁ))zds is zero, hence the convergence in (3.3) takes place. By taking
07" = (%)t also (3.2) holds. So according to theorem 3.2 the estimator 6 defined

by
f, 2dX, — a(6) f; bods
a(69)’r

6, =60 +
is optimal.

A MEASURABILITY ISSUES

In this appendix we set forth conditions under which suprema of random variables
are measurable and discuss some other measurabilitv issues We follow the approach
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given by Pollard in [9], Appendix C, which in turn is based on chapter III of
Dellacherie and Meyer [1].

Let (2, #, P) be a probability space. Let #™ and % be the Borel o-fields on R™
and R respectively, and let .# ® 4™ be the product o-algebra on Q x R™. Then we

have

O

x R measurable. Thcn themap 77 : Q)

LrmMmA Al Assume that 7 : Q x R™ R
given by Z*(w) = sup{Z(w, u):ueR"}is measurab e w.r.t FF, the completion o/

for the probabiliry measure P.
Proof See Pollard [9], page 197. |

Suppose now that there is instead of a single measure P a whole family P of
measures P is defined on (2, %), the usual situation in statistical problems. Assume
that there is a a-finite measure p that dominates this family, then we have in the

notation introduced above

)
3
)
Y
7
1

7

N @

LEMMA A.2  Assume thut Z . Q x R™ — R be measurable. The map Z* is measurable
w.r.t F it F is complete for some P € P or for ju.
The prool 1s obvious.

Another commonly used possibility to attack measurability problems for suprema
is to assume a separability condition for Z. However, similar problems as above
appear here, since the definition of separability (see [2]) involves sets of measure zero.
So in the presence of a family of measures it is not directly clear to which of those
“measure zero” refers.

Probably the easiest way to get rid of these measurability problems is to assume
that for each w the map Z(w,-) is continuous (or piecewise continuous). Then
suprema are determined by a fixed dense subset of R” like the rationals.

Other measurability probiems arise when we replace u in Z{w, u) with a random
vector, and we want the map w — Z(w,u(w)) to be measurable. A sufficient
condition for this to happen is that Z is jointly measurable in w and u and that
w — u(w) is measurable (cf. LeCam [8], restriction (M2)).

If we apply this result to the processes in section 2, we get for instance
adaptiveness of the process in expression (2.5) under the following set of conditions.

ASSUMPTIONA.3  ForeachfixedH € #,W € W andt > 0 the maps given by (w, 0) —
B(w,0), (w,0) —H - A% (), (w, 8) — W ue(w) wu(w) are jointly F,-measurable
with respect to all their arguments.
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